DON sinks

Deborah A. Bronk Department of Physical Sciences

Traditional Dogma

DON is refractory!

- DON sinks
 Autochthonous vs
 allochthonous
- Mechanisms of use DON
- Who is using what?

Allochthonous sources:
Rivers
Terrestrial runoff
Agricultural
Urban
Forested
Combined sewage overflows
Sewage effluent
Atmospheric deposition

2 - 84% of N in atmospheric deposition is DON Seitzinger and Sanders 1999 L&O 14 - 90% of N in rivers is DON

Seitzinger and Sanders 1997 MEPS

Methods for studying release:

- 1. Bioassays
- 2. Radioactive tracers
- 3. Stable isotope tracers
 - a. Direct measures
 - **b.** Isotope dilution

Atmospheric DON

Up to 60% of the DON was consumed in 6 days

Wiegner et al. 2006 AME

Water collected at 5, 16 and 28 ‰

Mulholland et al. in prep.

Incubated for ~2, 4, and 7 days - monitored nutrient and biomass parameters.

Response varied with salinity

+ EON = net consumption

Control - production and consumption

Making ¹⁵N-labeled humics

Humic uptake in culture

See et al. 2006 L&O

Humic Uptake Rates

Thalassiosira cf. miniscula

Drawbacks:

- DON pool of unknown composition
- Few commercially available tracers
- \$\$\$\$

Autochthonous sources of DON

Uptake characterization

Mississippi River Plume - July 2005

Outside Plume

Inside Plume

Outside Plume

Inside Plume

Outside Plume

Inside Plume

Orinoco River Plume - Oct 2006

Orinoco River Plume

Glibert et al. 2006 Biogeosciences

f-ratio =
$$\frac{NO_3^- \text{ uptake}}{NH_4^+ + NO_3^- + U + DPA \text{ uptake}}$$

Is the urea really regenerated? Is the NO₃- really new?

Chesapeake Bay - August

Bronk and Glibert 1993 Mar Biol

South Pacific

Bronk & Campbell In prep.

Phytoplankton mechanisms to access organic N:

Organic oxidases
Peptide hydrolysis
Pinocytosis
Phagocytosis
Photochemical processes
Adsorption - Desorption

Farming nitrogen from "refractory" compounds!

Cell Surface Enzymes

Palenik et al. 1988

Humic Uptake Mechanisms?

Photoproduction of labile N

Based on Bushaw et al. 1996 Nature

Who uses what?

Who cares? In estuararies and lakes...

- Phytoplankton \rightarrow O₂
- Bacteria take up $O_2 \rightarrow CO_2$
- Phytoplankton → higher trophic levels
- Phytoplankton can → HABs

Phytoplankton vs. Bacteria N Uptake

Size fractionation

GF/F filters retain 50-65% of all bacterial cells

Flow Cytometric Sorting

Flow Cytometric Sorting

Chesapeake Bay

July 2004

Chesapeake Bay - AA uptake

Modified from figure by Craig Phelps - Lee Kerkoff

Cesium Chloride (CsCl) Gradient

Modified from figure by Lee Kerkhoff

16S rRNA gene profiles of bacterial ¹⁵NO₃ uptake

Lee Kerkhoff et al. In prep.

- A significant fraction of both autothonous and allochthonous DON is labile on time scales of days.
- Both bacteria AND phytoplankton use DON.

Big Question: Who is using what?

Acknowledgments:
 Marta Sanderson and Quinn Roberts
 Paul Bradley and Jason See

River stuff: David John, John Paul, Jorge Corredor, Julio Morell, Lee Kerkhoff

EON stuff: Margie Mulholland, Nancy Love, Liz Canuel

